// ZX-Evo Base Configuration (c) NedoPC 2008,2009,2010,2011,2012,2013,2014
 
//
 
// vg93 interface
 
 
 
/*
 
    This file is part of ZX-Evo Base Configuration firmware.
 
 
 
    ZX-Evo Base Configuration firmware is free software:
 
    you can redistribute it and/or modify it under the terms of
 
    the GNU General Public License as published by
 
    the Free Software Foundation, either version 3 of the License, or
 
    (at your option) any later version.
 
 
 
    ZX-Evo Base Configuration firmware is distributed in the hope that
 
    it will be useful, but WITHOUT ANY WARRANTY; without even
 
    the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 
    See the GNU General Public License for more details.
 
 
 
    You should have received a copy of the GNU General Public License
 
    along with ZX-Evo Base Configuration firmware.
 
    If not, see <http://www.gnu.org/licenses/>.
 
*/
 
 
 
// #1F - vg93 command/state reg {0,0} - not here!
 
// #3F - vg93 track register    {0,1} - not here!
 
// #5F - vg93 sector register   {1,0} - not here!
 
// #7F - vg93 data register     {1,1} - not here!
 
// #FF - output "system" reg/input (DRQ+IRQ) reg
 
//   output: d6 - FM/MFM               - NOT USED ANYWHERE! -> skipped
 
//           d4 - disk side            - inverted out
 
//           d3 - head load            - for HRDY pin of vg93
 
//           d2 - /RESET for vg93      - must be zero at system reset
 
//           d1:d0 - disk drive select - to the 74138
 
//    input: d7 - /INTRQ - resynced at CPU clock
 
//           d6 - /DRQ   - .....................
 
//
 
// current limitations:
 
//  1. read clock regenerator is made of simple counter, as in pentagon128
 
//  1. write precompensation is based only on SL/SR/TR43 signals
 
 
 
`include "../include/tune.v"
 
 
 
module vg93(
 
 
 
        input zclk, // Z80 cpu clock
 
        input rst_n,
 
        input fclk, // fpga 28 MHz clock
 
 
 
        output vg_clk,
 
        output reg vg_res_n,
 
 
 
        input [7:0] din,  // data input from CPU
 
        output intrq,drq, // output signals for the read #FF (not here)
 
        input vg_wrFF,    // when TRDOS port #FF written - positive strobe
 
 
 
 
 
        output reg  vg_hrdy,
 
        output wire vg_rclk,
 
        output wire vg_rawr,
 
        output reg  [1:0] vg_a, // disk drive selection
 
        output reg  vg_wrd,
 
        output reg  vg_side,
 
 
 
        input step, // step signal from VG93
 
        input vg_sl,vg_sr,vg_tr43,
 
        input rdat_n,
 
        input vg_wf_de,
 
        input vg_drq,
 
        input vg_irq,
 
        input vg_wd
 
);
 
 
 
 
 
        localparam WRDELAY_OUTER_LEFT  = 4'd4;
 
        localparam WRDELAY_OUTER_RIGHT = 4'd11;
 
        localparam WRDELAY_INNER_LEFT  = 4'd0;  // minimal delay is for maximum shift left
 
        localparam WRDELAY_INNER_RIGHT = 4'd14; // maximal delay is for maximum shift right
 
        localparam WRDELAY_STANDARD    = 4'd7;  // no-shift
 
 
 
 
 
 
 
 
 
        reg [2:0] vgclk_div7;
 
        wire vgclk_strobe7;
 
        reg [1:0] vgclk_div4;
 
 
 
        reg [2:0] step_pulse;
 
        reg [2:0] drq_pulse;
 
        wire step_pospulse;
 
        wire  drq_pospulse;
 
        reg turbo_state;
 
 
 
        reg [1:0] intrq_sync;
 
        reg [1:0] drq_sync;
 
 
 
        reg [1:0] sl_sync,sr_sync,tr43_sync;
 
        reg [2:0] wd_sync;
 
        wire sl,sr,tr43,wd;
 
 
 
        reg [3:0] wrdelay_cnt;
 
        wire delay_end;
 
 
 
        reg [3:0] wrwidth_cnt;
 
        wire wrwidth_ena;
 
 
 
 
 
//      reg [4:0] rdat_sync;
 
//      reg rdat_edge1, rdat_edge2;
 
//      wire rdat;
 
 
 
//      reg [3:0] rwidth_cnt;
 
//      wire rwidth_ena;
 
//      reg [5:0] rclk_cnt;
 
//      wire rclk_strobe;
 
 
 
 
 
 
 
        // VG93 clocking and turbo-mode
 
 
 
        always @(posedge fclk)
 
        begin
 
                step_pulse[2:0] <= { step_pulse[1:0], step};
 
                 drq_pulse[2:0] <= {  drq_pulse[1:0], vg_drq};
 
        end
 
 
 
        assign step_pospulse = ( step_pulse[1] & (~step_pulse[2]) );
 
        assign  drq_pospulse = (  drq_pulse[1] & ( ~drq_pulse[2]) );
 
 
 
        always @(posedge fclk,negedge rst_n)
 
        begin
 
                if( !rst_n )
 
                        turbo_state <= 1'b0;
 
                else
 
                begin
 
                        if( drq_pospulse )
 
                                turbo_state <= 1'b0;
 
                        else if( step_pospulse )
 
                                turbo_state <= 1'b1;
 
                end
 
        end
 
 
 
 
 
 
 
        assign vgclk_strobe7 = (vgclk_div7[2:1] == 2'b11); // 28/7=4MHz freq strobe
 
 
 
        always @(posedge fclk)
 
        begin
 
                if( vgclk_strobe7 )
 
                        vgclk_div7 <= 3'd0;
 
                else
 
                        vgclk_div7 <= vgclk_div7 + 3'd1;
 
        end
 
 
 
        always @(posedge fclk)
 
        begin
 
                if( vgclk_strobe7 )
 
                begin
 
                        vgclk_div4[0] <= ~vgclk_div4[1];
 
 
 
                        if( turbo_state )
 
                                vgclk_div4[1] <= ~vgclk_div4[1];
 
                        else
 
                                vgclk_div4[1] <= vgclk_div4[0];
 
                end
 
        end
 
 
 
        assign vg_clk = vgclk_div4[1];
 
 
 
 
 
        // input/output for TR-DOS port #FF
 
 
 
        always @(posedge zclk, negedge rst_n) // CHANGE IF GO TO THE positive/negative strobes instead of zclk!
 
        begin
 
                if( !rst_n )
 
                        vg_res_n <= 1'b0;
 
                else if( vg_wrFF )
 
                        { vg_side, vg_hrdy, vg_res_n, vg_a } <= { (~din[4]),din[3],din[2],din[1:0] };
 
        end
 
 
 
        always @(posedge zclk)
 
        begin
 
                intrq_sync[1:0] <= {intrq_sync[0],vg_irq};
 
                drq_sync[1:0] <= {drq_sync[0],vg_drq};
 
        end
 
 
 
        assign intrq = intrq_sync[1];
 
        assign drq   =   drq_sync[1];
 
 
 
 
 
 
 
 
 
        // write precompensation
 
        // delay times are as in WRDELAY_* parameters, vg_wrd width is always 7 clocks
 
 
 
        always @(posedge fclk)
 
        begin
 
                  sl_sync[1:0] <= {   sl_sync[0],   vg_sl   };
 
                  sr_sync[1:0] <= {   sr_sync[0],   vg_sr   };
 
                tr43_sync[1:0] <= { tr43_sync[0],   vg_tr43 };
 
                  wd_sync[2:0] <= {   wd_sync[1:0], vg_wd   };
 
        end
 
 
 
        assign   sl =   sl_sync[1]; // just state signals
 
        assign   sr =   sr_sync[1]; //
 
        assign tr43 = tr43_sync[1]; //
 
 
 
        assign   wd =   wd_sync[1] & (~wd_sync[2]); // strobe: beginning of vg_wd
 
 
 
 
 
        // make delay
 
        always @(posedge fclk)
 
        begin
 
                if( wd )
 
                        case( {sl, tr43, sr} )
 
                        3'b100:  // shift left, outer tracks
 
                                wrdelay_cnt <= WRDELAY_OUTER_LEFT;
 
                        3'b001:  // shift right, outer tracks
 
                                wrdelay_cnt <= WRDELAY_OUTER_RIGHT;
 
                        3'b110:  // shift left, inner tracks
 
                                wrdelay_cnt <= WRDELAY_INNER_LEFT;
 
                        3'b011:  // shift right, inner tracks
 
                                wrdelay_cnt <= WRDELAY_INNER_RIGHT;
 
                        default: // no shift
 
                                wrdelay_cnt <= WRDELAY_STANDARD;
 
                        endcase
 
                else if( !delay_end )
 
                        wrdelay_cnt <= wrdelay_cnt - 4'd1;
 
        end
 
 
 
        assign delay_end = (wrdelay_cnt==4'd0);
 
 
 
 
 
        // make vg_wdr impulse after a delay
 
 
 
        always @(posedge fclk)
 
                if( wrwidth_ena )
 
                begin
 
                        if( wd )
 
                                wrwidth_cnt <= 4'd0;
 
                        else
 
                                wrwidth_cnt <= wrwidth_cnt + 4'd1;
 
                end
 
 
 
        assign wrwidth_ena = wd | ( delay_end & (~wrwidth_cnt[3]) );
 
 
 
        always @(posedge fclk)
 
                vg_wrd <= | wrwidth_cnt[2:0]; // only 7 clocks is the lendth of vg_wrd
 
 
 
 
 
 
 
 
 
/*      fapch_counter dpll
 
        (
 
                .fclk   (fclk   ),
 
 
 
                .rdat_n (rdat_n ),
 
 
 
                .vg_rclk(vg_rclk),
 
                .vg_rawr(vg_rawr)
 
        );
 
*/
 
 
 
        fapch_zek     dpll
 
        (
 
                .fclk   (fclk   ),
 
 
 
                .rdat_n (rdat_n ),
 
 
 
                .vg_rclk(vg_rclk),
 
                .vg_rawr(vg_rawr)
 
        );
 
 
 
 
 
 
 
 
 
endmodule