/**
* support MD5 for PPPoE CHAP mode
*
* taken from RFC-1321/Appendix A.3
* MD5C.C - RSA Data Security, Inc., MD5 message-digest algorithm
*/
/*
********************************************************************************
File Include Section
********************************************************************************
*/
#include <string.h>
#include "md5.h"
// Constants for Transform routine.
#define S11 7
#define S12 12
#define S13 17
#define S14 22
#define S21 5
#define S22 9
#define S23 14
#define S24 20
#define S31 4
#define S32 11
#define S33 16
#define S34 23
#define S41 6
#define S42 10
#define S43 15
#define S44 21
void md5_transform (uint32[4], uint8 [64]);
void md5_encode (uint8 *, uint32 *, uint32);
void md5_decode (uint32 *, uint8 *, uint32);
uint8 padding[64] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0
};
// F, G, H and I are basic md5 functions.
#define F(x, y, z) (((x) & (y)) | ((~x) & (z)))
#define G(x, y, z) (((x) & (z)) | ((y) & (~z)))
#define H(x, y, z) ((x) ^ (y) ^ (z))
#define I(x, y, z) ((y) ^ ((x) | (~z)))
// ROTATE_LEFT rotates x left n bits.
#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n))))
uint32 FF(uint32 a, uint32 b, uint32 c, uint32 d, uint32 x, uint32 s, uint32 ac)
{
a += F (b, c, d) + x + (uint32)(ac);
a = ROTATE_LEFT (a, s);
a += b;
return a;
}
uint32 GG(uint32 a, uint32 b, uint32 c, uint32 d, uint32 x, uint32 s, uint32 ac)
{
a += G (b, c, d) + x + (uint32)(ac);
a = ROTATE_LEFT (a, s);
a += b;
return a;
}
uint32 HH(uint32 a, uint32 b, uint32 c, uint32 d, uint32 x, uint32 s, uint32 ac)
{
a += H (b, c, d) + x + (uint32)(ac);
a = ROTATE_LEFT (a, s);
a += b;
return a;
}
uint32 II(uint32 a, uint32 b, uint32 c, uint32 d, uint32 x, uint32 s, uint32 ac)
{
a += I (b, c, d) + x + (uint32)(ac);
a = ROTATE_LEFT (a, s);
a += b;
return a;
}
// md5 initialization. Begins an md5 operation, writing a new context.
void md5_init(md5_ctx *context)
{
context->count[0] = context->count[1] = 0;
// Load magic initialization constants.
context->state[0] = 0x67452301;
context->state[1] = 0xefcdab89;
context->state[2] = 0x98badcfe;
context->state[3] = 0x10325476;
}
// md5 block update operation. Continues an md5 message-digest operation,
// processing another message block, and updating the context.
void md5_update(md5_ctx * context, uint8 *input, uint32 inputLen)
{
uint32 i, index, partLen;
// Compute number of bytes mod 64
index = (uint32)((context->count[0] >> 3) & 0x3F);
// Update number of bits
if ((context->count[0] += ((uint32)inputLen << 3)) < ((uint32)inputLen << 3))
context->count[1]++;
context->count[1] += ((uint32)inputLen >> 29);
partLen = 64 - index;
// md5_Transform as many times as possible.
if (inputLen >= partLen)
{
memcpy(&context
->buffer
[index
], input
, partLen
);
md5_transform(context->state, context->buffer);
for (i = partLen; i + 63 < inputLen; i += 64)
md5_transform(context->state, &input[i]);
index = 0;
}
else
i = 0;
// Buffer remaining input
memcpy(&context
->buffer
[index
], &input
[i
], inputLen
- i
);
}
// md5 finalization. Ends an md5 message-digest operation, writing the
// message digest and zeroizing the context.
void md5_final(uint8 digest[16], md5_ctx *context)
{
uint8 bits[8];
uint32 index, padLen;
// Save number of bits
md5_encode(bits, context->count, 8);
// Pad out to 56 mod 64.
index = (uint32)((context->count[0] >> 3) & 0x3f);
padLen = (index < 56) ? (56 - index) : (120 - index);
md5_update(context, padding, padLen);
// Append length (before padding)
md5_update(context, bits, 8);
// Store state in digest
md5_encode(digest, context->state, 16);
// Zeroize sensitive information.
memset((void*)context
,0,sizeof(*context
));
}
// md5 basic transformation. Transforms state based on block.
void md5_transform(uint32 state[4], uint8 block[64])
{
uint32 a = state[0];
uint32 b = state[1];
uint32 c = state[2];
uint32 d = state[3];
uint32 x[16];
md5_decode(x, block, 64);
// Round 1
a = FF(a, b, c, d, x[0], S11, 0xd76aa478); // 1
d = FF(d, a, b, c, x[1], S12, 0xe8c7b756); // 2
c = FF(c, d, a, b, x[2], S13, 0x242070db); // 3
b = FF(b, c, d, a, x[3], S14, 0xc1bdceee); // 4
a = FF(a, b, c, d, x[4], S11, 0xf57c0faf); // 5
d = FF(d, a, b, c, x[5], S12, 0x4787c62a); // 6
c = FF(c, d, a, b, x[6], S13, 0xa8304613); // 7
b = FF(b, c, d, a, x[7], S14, 0xfd469501); // 8
a = FF(a, b, c, d, x[8], S11, 0x698098d8); // 9
d = FF(d, a, b, c, x[9], S12, 0x8b44f7af); // 10
c = FF(c, d, a, b, x[10], S13, 0xffff5bb1); // 11
b = FF(b, c, d, a, x[11], S14, 0x895cd7be); // 12
a = FF(a, b, c, d, x[12], S11, 0x6b901122); // 13
d = FF(d, a, b, c, x[13], S12, 0xfd987193); // 14
c = FF(c, d, a, b, x[14], S13, 0xa679438e); // 15
b = FF(b, c, d, a, x[15], S14, 0x49b40821); // 16
// Round 2
a = GG(a, b, c, d, x[1], S21, 0xf61e2562); // 17
d = GG(d, a, b, c, x[6], S22, 0xc040b340); // 18
c = GG(c, d, a, b, x[11], S23, 0x265e5a51); // 19
b = GG(b, c, d, a, x[0], S24, 0xe9b6c7aa); // 20
a = GG(a, b, c, d, x[5], S21, 0xd62f105d); // 21
d = GG(d, a, b, c, x[10], S22, 0x2441453); // 22
c = GG(c, d, a, b, x[15], S23, 0xd8a1e681); // 23
b = GG(b, c, d, a, x[4], S24, 0xe7d3fbc8); // 24
a = GG(a, b, c, d, x[9], S21, 0x21e1cde6); // 25
d = GG(d, a, b, c, x[14], S22, 0xc33707d6); // 26
c = GG(c, d, a, b, x[3], S23, 0xf4d50d87); // 27
b = GG(b, c, d, a, x[8], S24, 0x455a14ed); // 28
a = GG(a, b, c, d, x[13], S21, 0xa9e3e905); // 29
d = GG(d, a, b, c, x[2], S22, 0xfcefa3f8); // 30
c = GG(c, d, a, b, x[7], S23, 0x676f02d9); // 31
b = GG(b, c, d, a, x[12], S24, 0x8d2a4c8a); // 32
// Round 3
a = HH(a, b, c, d, x[5], S31, 0xfffa3942); // 33
d = HH(d, a, b, c, x[8], S32, 0x8771f681); // 34
c = HH(c, d, a, b, x[11], S33, 0x6d9d6122); // 35
b = HH(b, c, d, a, x[14], S34, 0xfde5380c); // 36
a = HH(a, b, c, d, x[1], S31, 0xa4beea44); // 37
d = HH(d, a, b, c, x[4], S32, 0x4bdecfa9); // 38
c = HH(c, d, a, b, x[7], S33, 0xf6bb4b60); // 39
b = HH(b, c, d, a, x[10], S34, 0xbebfbc70); // 40
a = HH(a, b, c, d, x[13], S31, 0x289b7ec6); // 41
d = HH(d, a, b, c, x[0], S32, 0xeaa127fa); // 42
c = HH(c, d, a, b, x[3], S33, 0xd4ef3085); // 43
b = HH(b, c, d, a, x[6], S34, 0x4881d05); // 44
a = HH(a, b, c, d, x[9], S31, 0xd9d4d039); // 45
d = HH(d, a, b, c, x[12], S32, 0xe6db99e5); // 46
c = HH(c, d, a, b, x[15], S33, 0x1fa27cf8); // 47
b = HH(b, c, d, a, x[2], S34, 0xc4ac5665); // 48
// Round 4
a = II(a, b, c, d, x[0], S41, 0xf4292244); // 49
d = II(d, a, b, c, x[7], S42, 0x432aff97); // 50
c = II(c, d, a, b, x[14], S43, 0xab9423a7); // 51
b = II(b, c, d, a, x[5], S44, 0xfc93a039); // 52
a = II(a, b, c, d, x[12], S41, 0x655b59c3); // 53
d = II(d, a, b, c, x[3], S42, 0x8f0ccc92); // 54
c = II(c, d, a, b, x[10], S43, 0xffeff47d); // 55
b = II(b, c, d, a, x[1], S44, 0x85845dd1); // 56
a = II(a, b, c, d, x[8], S41, 0x6fa87e4f); // 57
d = II(d, a, b, c, x[15], S42, 0xfe2ce6e0); // 58
c = II(c, d, a, b, x[6], S43, 0xa3014314); // 59
b = II(b, c, d, a, x[13], S44, 0x4e0811a1); // 60
a = II(a, b, c, d, x[4], S41, 0xf7537e82); // 61
d = II(d, a, b, c, x[11], S42, 0xbd3af235); // 62
c = II(c, d, a, b, x[2], S43, 0x2ad7d2bb); // 63
b = II(b, c, d, a, x[9], S44, 0xeb86d391); // 64
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
// Zeroize sensitive information.
}
// Encodes input (uint32) into output (uint8). Assumes len is a
// multiple of 4.
void md5_encode(uint8 *output, uint32 *input, uint32 len)
{
uint32 i, j;
for (i = 0, j = 0; j < len; i++, j += 4)
{
output[j] = (uint8)(input[i] & 0xff);
output[j + 1] = (uint8)((input[i] >> 8) & 0xff);
output[j + 2] = (uint8)((input[i] >> 16) & 0xff);
output[j + 3] = (uint8)((input[i] >> 24) & 0xff);
}
}
// Decodes input (uint8) into output (uint32). Assumes len is a
// multiple of 4.
void md5_decode(uint32 *output, uint8 *input, uint32 len)
{
uint32 i, j;
for (i = 0, j = 0; j < len; i++, j += 4)
output[i] = ((uint32) input[j]) | (((uint32) input[j + 1]) << 8) |
(((uint32)input[j + 2]) << 16) | (((uint32)input[j + 3]) << 24);
}